| 1 | /* |
---|
| 2 | * TSPSG: TSP Solver and Generator |
---|
| 3 | * Copyright (C) 2007-2009 Lёppa <contacts[at]oleksii[dot]name> |
---|
| 4 | * |
---|
| 5 | * $Id: tspsolver.cpp 50 2009-08-03 15:15:46Z laleppa $ |
---|
| 6 | * $URL: https://tspsg.svn.sourceforge.net/svnroot/tspsg/trunk/src/tspsolver.cpp $ |
---|
| 7 | * |
---|
| 8 | * This file is part of TSPSG. |
---|
| 9 | * |
---|
| 10 | * TSPSG is free software: you can redistribute it and/or modify |
---|
| 11 | * it under the terms of the GNU General Public License as published by |
---|
| 12 | * the Free Software Foundation, either version 3 of the License, or |
---|
| 13 | * (at your option) any later version. |
---|
| 14 | * |
---|
| 15 | * TSPSG is distributed in the hope that it will be useful, |
---|
| 16 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 17 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 18 | * GNU General Public License for more details. |
---|
| 19 | * |
---|
| 20 | * You should have received a copy of the GNU General Public License |
---|
| 21 | * along with TSPSG. If not, see <http://www.gnu.org/licenses/>. |
---|
| 22 | */ |
---|
| 23 | |
---|
| 24 | #include "tspsolver.h" |
---|
| 25 | #include "tspmodel.h" |
---|
| 26 | |
---|
| 27 | CTSPSolver::CTSPSolver() |
---|
| 28 | : nCities(0) |
---|
| 29 | { |
---|
| 30 | } |
---|
| 31 | |
---|
| 32 | void CTSPSolver::cleanup() |
---|
| 33 | { |
---|
| 34 | route.clear(); |
---|
| 35 | } |
---|
| 36 | |
---|
| 37 | double CTSPSolver::findMinInRow(int nRow, tMatrix matrix, int exc) |
---|
| 38 | { |
---|
| 39 | double min = INFINITY; |
---|
| 40 | for (int k = 0; k < nCities; k++) |
---|
| 41 | if (((k != exc)) && (min > matrix[nRow][k])) |
---|
| 42 | min = matrix[nRow][k]; |
---|
| 43 | return min == INFINITY ? 0 : min; |
---|
| 44 | } |
---|
| 45 | |
---|
| 46 | double CTSPSolver::findMinInCol(int nCol, tMatrix matrix, int exr) |
---|
| 47 | { |
---|
| 48 | double min = INFINITY; |
---|
| 49 | for (int k = 0; k < nCities; k++) |
---|
| 50 | if ((k != exr) && (min > matrix[k][nCol])) |
---|
| 51 | min = matrix[k][nCol]; |
---|
| 52 | return min == INFINITY ? 0 : min; |
---|
| 53 | } |
---|
| 54 | |
---|
| 55 | void CTSPSolver::subRow(tMatrix &matrix, int nRow, double val) |
---|
| 56 | { |
---|
| 57 | for (int k = 0; k < nCities; k++) |
---|
| 58 | if (k != nRow) |
---|
| 59 | matrix[nRow][k] -= val; |
---|
| 60 | } |
---|
| 61 | |
---|
| 62 | void CTSPSolver::subCol(tMatrix &matrix, int nCol, double val) |
---|
| 63 | { |
---|
| 64 | for (int k = 0; k < nCities; k++) |
---|
| 65 | if (k != nCol) |
---|
| 66 | matrix[k][nCol] -= val; |
---|
| 67 | } |
---|
| 68 | |
---|
| 69 | double CTSPSolver::align(tMatrix &matrix) |
---|
| 70 | { |
---|
| 71 | double r = 0; |
---|
| 72 | double min; |
---|
| 73 | for (int k = 0; k < nCities; k++) { |
---|
| 74 | min = findMinInRow(k,matrix); |
---|
| 75 | if (min > 0) { |
---|
| 76 | r += min; |
---|
| 77 | subRow(matrix,k,min); |
---|
| 78 | } |
---|
| 79 | } |
---|
| 80 | for (int k = 0; k < nCities; k++) { |
---|
| 81 | min = findMinInCol(k,matrix); |
---|
| 82 | if (min > 0) { |
---|
| 83 | r += min; |
---|
| 84 | subCol(matrix,k,min); |
---|
| 85 | } |
---|
| 86 | } |
---|
| 87 | return r; |
---|
| 88 | } |
---|
| 89 | |
---|
| 90 | bool CTSPSolver::findCandidate(tMatrix matrix, int &nRow, int &nCol, double &h) |
---|
| 91 | { |
---|
| 92 | h = -1; |
---|
| 93 | nRow = -1; |
---|
| 94 | nCol = -1; |
---|
| 95 | bool alts = false; |
---|
| 96 | double sum; |
---|
| 97 | for (int r = 0; r < nCities; r++) |
---|
| 98 | for (int c = 0; c < nCities; c++) |
---|
| 99 | // if ((matrix[r][c] == 0) && !forbidden.values(r).contains(c)) { |
---|
| 100 | if (matrix[r][c] == 0) { |
---|
| 101 | sum = findMinInRow(r,matrix,c) + findMinInCol(c,matrix,r); |
---|
| 102 | if (sum > h) { |
---|
| 103 | h = sum; |
---|
| 104 | nRow = r; |
---|
| 105 | nCol = c; |
---|
| 106 | alts = false; |
---|
| 107 | } else if (sum == h) |
---|
| 108 | alts = true; |
---|
| 109 | } |
---|
| 110 | return alts; |
---|
| 111 | } |
---|
| 112 | |
---|
| 113 | bool CTSPSolver::hasSubCycles(int nRow, int nCol) |
---|
| 114 | { |
---|
| 115 | if ((nRow < 0) || (nCol < 0) || route.isEmpty() || !(route.size() < nCities - 1) || !route.contains(nCol)) |
---|
| 116 | return false; |
---|
| 117 | int i = nCol; |
---|
| 118 | while (true) { |
---|
| 119 | if ((i = route[i]) == nRow) |
---|
| 120 | return true; |
---|
| 121 | if (!route.contains(i)) |
---|
| 122 | return false; |
---|
| 123 | } |
---|
| 124 | return false; |
---|
| 125 | } |
---|
| 126 | |
---|
| 127 | // TODO: Comment the algorithm |
---|
| 128 | sStep *CTSPSolver::solve(int numCities, tMatrix task, QWidget *parent) |
---|
| 129 | { |
---|
| 130 | if (numCities <= 1) |
---|
| 131 | return NULL; |
---|
| 132 | cleanup(); |
---|
| 133 | nCities = numCities; |
---|
| 134 | double s; |
---|
| 135 | QProgressDialog pd(parent); |
---|
| 136 | QProgressBar *pb = new QProgressBar(&pd); |
---|
| 137 | pb->setAlignment(Qt::AlignCenter); |
---|
| 138 | pb->setFormat(trUtf8("%v of %m parts found")); |
---|
| 139 | pd.setBar(pb); |
---|
| 140 | pd.setMaximum(nCities); |
---|
| 141 | pd.setMinimumDuration(1000); |
---|
| 142 | pd.setLabelText(trUtf8("Calculating optimal route...")); |
---|
| 143 | pd.setWindowTitle(trUtf8("Solution Progress")); |
---|
| 144 | pd.setWindowModality(Qt::ApplicationModal); |
---|
| 145 | pd.setValue(0); |
---|
| 146 | |
---|
| 147 | sStep *step = new sStep(); |
---|
| 148 | step->matrix = task; |
---|
| 149 | |
---|
| 150 | s = align(step->matrix); |
---|
| 151 | step->price = s; |
---|
| 152 | root = step; |
---|
| 153 | |
---|
| 154 | sStep *left, *right; |
---|
| 155 | int nRow, nCol; |
---|
| 156 | while (route.size() < nCities) { |
---|
| 157 | // forbidden.clear(); |
---|
| 158 | step->alts = findCandidate(step->matrix,nRow,nCol,s); |
---|
| 159 | while (hasSubCycles(nRow,nCol)) { |
---|
| 160 | // forbidden[nRow] = nCol; |
---|
| 161 | step->matrix[nRow][nCol] = INFINITY; |
---|
| 162 | step->price += align(step->matrix); |
---|
| 163 | step->alts = findCandidate(step->matrix,nRow,nCol,s); |
---|
| 164 | } |
---|
| 165 | if ((nRow == -1) || (nCol == -1) || pd.wasCanceled()) { |
---|
| 166 | root = NULL; |
---|
| 167 | break; |
---|
| 168 | } |
---|
| 169 | |
---|
| 170 | // Route with (nRow,nCol) path |
---|
| 171 | right = new sStep(); |
---|
| 172 | right->matrix = step->matrix; |
---|
| 173 | for (int k = 0; k < nCities; k++) { |
---|
| 174 | if (k != nCol) |
---|
| 175 | right->matrix[nRow][k] = INFINITY; |
---|
| 176 | if (k != nRow) |
---|
| 177 | right->matrix[k][nCol] = INFINITY; |
---|
| 178 | } |
---|
| 179 | right->price = step->price + align(right->matrix); |
---|
| 180 | // Forbid selected route to exclude its reuse in next steps. |
---|
| 181 | right->matrix[nCol][nRow] = INFINITY; |
---|
| 182 | right->matrix[nRow][nCol] = INFINITY; |
---|
| 183 | |
---|
| 184 | // Route without (nRow,nCol) path |
---|
| 185 | left = new sStep(); |
---|
| 186 | left->matrix = step->matrix; |
---|
| 187 | left->matrix[nRow][nCol] = INFINITY; |
---|
| 188 | left->price = step->price + align(left->matrix); |
---|
| 189 | |
---|
| 190 | step->candidate.nRow = nRow; |
---|
| 191 | step->candidate.nCol = nCol; |
---|
| 192 | step->plNode = left; |
---|
| 193 | step->prNode = right; |
---|
| 194 | |
---|
| 195 | if (right->price <= left->price) { |
---|
| 196 | // Route with (nRow,nCol) path is cheaper |
---|
| 197 | step = right; |
---|
| 198 | route[nRow] = nCol; |
---|
| 199 | pd.setValue(route.size()); |
---|
| 200 | } else { |
---|
| 201 | // Route without (nRow,nCol) path is cheaper |
---|
| 202 | step = left; |
---|
| 203 | qApp->processEvents(); |
---|
| 204 | } |
---|
| 205 | } |
---|
| 206 | |
---|
| 207 | if (!root && !pd.wasCanceled()) { |
---|
| 208 | pd.reset(); |
---|
| 209 | QMessageBox(QMessageBox::Warning,trUtf8("Solution Result"),trUtf8("Unable to find solution.\nMaybe, this task has no solutions."),QMessageBox::Ok,parent).exec(); |
---|
| 210 | } |
---|
| 211 | |
---|
| 212 | qApp->processEvents(); |
---|
| 213 | |
---|
| 214 | return root; |
---|
| 215 | } |
---|